
Adding a Slack Bot to a Concourse Pipeline

Contents
Overview

Set up Slack WebHook Integration

Add the Slack Resource Type

Add the Slack Resource

Add Step Hooks

Update the Pipeline

This topic explains how to create a Slack notification bot for the build status of a Concourse

pipeline.

Overview
The Cloud Foundry Community organization provides a slack-notification Concourse

resource type for sending notifications to Slack. To enable Slack notifications, you must add

the slack-notification resource type and a corresponding Slack resource to your

Concourse pipeline.yml and plan.yml files. Because these YAML files are auto-generated

when you update a pipeline, you must configure lib/pub_tools/scheme.rb and Rakefile to

add the resource type and resource.

Do not directly modify Concourse YAML files. If you add a resource type or resource

to a YAML file, Concourse overwrites your changes when you update the pipeline.

For more information about the slack-notification resource type, see Slack notification

sending resource on GitHub. For more information about resource types and resources, see

Resource Types and Resources in the Concourse documentation.

You can use this procedure as a template for adding other custom resource types to

a Concourse pipeline.

Set up Slack WebHook Integration
Slack provides an Incoming WebHook integration that can post messages from external

sources to Slack. You can add this integration to a Concourse pipeline to send messages to

Slack about the pipeline s̓ build status.

To set up the Slack WebHook:

�. In a web browser, go to the Slack integration page for Incoming WebHooks.

�. Select the Slack channel that you want the bot to post to in Integration Settings.

�. Record the provided Webhook URL.

�. Customize the Name and Icon.

�. Click Save Settings.

Warning

Hint

https://github.com/cloudfoundry-community/slack-notification-resource
https://concourse-ci.org/resource-types.html
https://concourse-ci.org/resources.html
https://pivotal.slack.com/apps/new/A0F7XDUAZ-incoming-webhooks

�. Open workspace/docs-concourse-creds/credentials.yml in a text editor.

�. Add the following line to credentials.yml:

slack-webhook: YOUR-WEBHOOK-URL

Where YOUR-WEBHOOK-URL is the Webhook URL you recorded in the previous step.

When you update your pipeline, Concourse uses this webhook to connect to the Slack

bot.

Add the Slack Resource Type
To enable Slack notifications, you must add the slack-notification resource type to

pipeline.yml. You can do this by editing the Rakefile file that auto-generates pipeline.yml.

To add the slack-notification resource type to pipeline.yml:

�. Open workspace/concourse-scripts-docs/Rakefile in a text editor.

�. Locate the following line:

File.write(File.join(pipeline_name, 'pipeline.yml'), "# Generated
file...\n" + yaml)

�. Edit the above line to add the slack-notification resource type as follows:

File.write(File.join(pipeline_name, 'pipeline.yml'), "# Generated
file...\n" + yaml +
"resource_types:
- name: slack-notification
 type: docker-image
 source:
 repository: cfcommunity/slack-notification-resource)
 tag: latest"

Add the Slack Resource
After you add the slack-notification resource type to your pipeline, you must add a

corresponding Slack resource to pipeline.yml. You can do this by editing the scheme.rb file

that auto-generates pipeline.yml.

To add the Slack resource to pipeline.yml:

�. Open workspace/concourse-scripts-docs/lib/pub_tools/scheme.rb in a text editor.

�. Edit the deploy_resources definition to add the Slack resource as follows:

def deploy_resources
 [
 {
 'name' => 'concourse-scripts-bundle',
 'type' => 's3',
 'source' => {
 'bucket' => 'concourse-interim-steps',
 'versioned_file' => 'concourse-scripts-bundle.tar.gz',
 'private' => true,
 'access_key_id' => '{{aws-access-key}}',
 'secret_access_key' => '{{aws-secret-key}}'
 }
 },

 {
 'name' => 'notify',
 'type' => 'slack-notification',
 'source' => {
 'url' => '((slack-webhook))'
 },
 }

]
 end

Add Step Hooks
Concourse provides a on_failure step hook that runs a parent step fails. You can add a

on_failure step hook to a bind or deploy task in plan.yaml. When the parent task fails,

Concourse triggers the notify resource and sends a message to a Slack channel. You can

add the step hook by editing the scheme.rb file that auto-generates plan.yml.

For more information about the on_failure step hook, see on_failure Step Hook in the

Concourse documentation.

If you want to post a message to Slack when a task succeeds, use the on_success

step hook instead. For more information, see on_success Step Hook in the

Concourse documentation.

To add the on_failure step hook to plan.yml:

�. Open workspace/concourse-scripts-docs/lib/pub_tools/scheme.rb in a text editor.

�. Edit the bind_plan definition to add the on_failure step hook as follows:

def bind_plan
 aggregate = config.all_repos.map { |repo|
 { 'get' => repo.friendly_name, 'resource' => repo.full_name,
'trigger' => repo.trigger, 'params' => { 'submodules' => 'none' } }
 }

 aggregate << { 'get' => 'bookbinder-release', 'resource' =>
'bookbinder-release-complete', 'trigger' => true }

 [
 { 'aggregate' => aggregate },
 { 'task' => "#{name}-bind", 'file' => "concourse-scripts/#
{pipeline}/#{group}/#{name}-bind/task.yml",
 'on_failure' => {
 'put' => 'notify',
 'params' =>
 {'text' => 'BOT-MESSAGE'}
 },
 { 'aggregate' =>
 [
 { 'put' => s3_resource, 'params' => { 'file' =>
'bind_output/final_app.tar.gz'} },
]
 }
]
 end

Hint

https://concourse-ci.org/on-failure-hook.html#schema.on_failure
https://concourse-ci.org/on-success-step.html

Where BOT-MESSAGE is the message that you want to post to Slack when documentation

fails to build.

For a descriptive message, you can configure the bot message with Concourse

environment variables. For more information, see Metadata in the Concourse

documentation.

�. Edit the deploy_plan definition to add the on_failure step hook as follows:

 def deploy_plan(environment, stream_id, dependency, trigger)
 previous_job = "#{name}-#{dependency}"
 environment = environment.gsub('-', '_')

 [
 {
 'aggregate' => [
 { 'get' => 'concourse-scripts', 'resource' => 'concourse-
scripts-docs-master', 'passed' => [previous_job]},
 { 'get' => 'concourse-scripts-bundle' },
 { 'get' => 'site-source', 'resource' => s3_resource, 'passed'
=> [previous_job], 'trigger' => trigger }
]
 },
 { 'task' => 'deploy', 'file' => 'concourse-
scripts/deploy_task.yml', 'params' => {
 'DEPLOY_DETAILS' => "concourse-scripts/#{pipeline}/#
{group}/config.yml",
 'DEPLOY_ENV' => environment,
 'BOOK_ID' => stream_id,
 'USERNAME' => "{{cloud-foundry-username}}",
 'PASSWORD' => "{{cloud-foundry-password}}"
 },
 'on_failure' => {
 'put' => 'notify',
 'params' =>
 {
 'text' => 'BOT-MESSAGE'}
 }
 }
]
 end

Where BOT-MESSAGE is the message that you want to post to Slack when documentation

fails to deploy.

Update the Pipeline
To apply your changes to pipeline.yml and plan.yml, you must update your Concourse

pipeline.

To update your pipeline:

�. Run the following command:

 rake scheme:update[PIPELINE/PIPELINE-GROUP]

Where:

PIPELINE is the Concourse pipeline you are updating.

PIPELINE-GROUP is the Concourse pipeline group you are updating.

Alternatively, to update all of the pipeline groups in a pipeline, run the following

command:

rake scheme:update_all[PIPELINE]

�. Run the following command:

Hint

https://concourse-ci.org/implementing-resource-types.html#resource-metadata

rake fly:set_pipeline[PIPELINE]

Where PIPELINE is the Concourse pipeline from the previous step.

�. When prompted, confirm that the new configuration for the pipeline is correct.

�. Add, commit, and push your changes to GitHub.

